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Bottle Making Process
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Gob Forming Models
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Container Forming Modeling
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Goals of Container Forming Modeling Effort

Inverse parison design
Improved blank mold design and cooling strategies
Investigation of problem areas during forming process:
* Large variation in container thickness
* Non-uniform temperature distribution
* Poor parison design
Determine regions of high stress intensity
Evaluate sources of high stress intensities and develop
strategies to eliminate regions of potential check
formation



Press & Blow Forming Process 9

GOB LOADING PRESSING PARISON FORMING

INVERT REVERT

REHBAT FORMING TAKE QuT
AND STRETCH FINAL BLOW AND/OR YACUUM



Mold/Plunger Side Heat Transfer

Heat Flux Cycling on Mold/Plunger
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Typical Container Forming Model
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Typical Bottles Previously Simulated




Typical Wall Thickness Distribution Predictions
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Why Doesn’t it Always Work...?



Outstanding Forming Modeling Issues

 Fundamental understanding of glass/mold heat transfer
and the effects of mold lubricants

« Accurate material properties

* Numerical limits (mesh size/time step)

* Fluid dynamic (“slip”) condition at the glass mold interface
« Radiation modeling during forming

* Viscoelastic stress development and defect formation
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Heat Transfer Boundary Conditions

Most studies assume a combination of the following:
 Perfect contact between mold and glass
» Heat transfer coefficient between glass and mold is constant

« Heat transfer coefficient usually based on overall heat balance rather
than local conditions

Glass to Blank Mold Heat Flux Expressions
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Glass/Mold Heat Transfer: Heat Flux Correlations
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Heat Transfer Measurements

Glass/mold contact conductance experimentally
modeled and includes the effects of:

» Glass pressure

» Glass color

« Initial glass temperature
* Initial mold temperature

* Mold type

— (cast iron vs. Al-Br)




Governing Equation for Data Reduction
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One-dimensional Transient Heat Conduction Equation in Radial Coordinates

Assumptions

* Radial conduction much greater than axial or circumferential conduction
 Radiation is a diffusive process and can be included in an effective conductivity
* Plunger side heat transfer does not affect mold side heat transfer

Important Effects to
Include in Data
Reduction

Discrete
Ordinates

4 Model for

Radiation

Plunger/air

5 convective

effects



Measured Material Properties

Glass Viscosity

— Modified WLF equation including Simmon’s correlation for shear
thinning and generalized White-Metzner viscoelastic model

Specific Heat of Glass

— Correlated vs. composition and temperature from 1500 K down to
300 K

Glass Thermal Conductivity (Radiative Conductivity)

— Surface fit for glass thickness and temperature for various types of
glasses (flint, amber, dark green, etc.)

Glass Thermal Expansion

— Curve fit as a function of temperature

Glass Surface Tension

— Curve fit as a function of temperature



Glass Thickness Sensitivity to Parameter Input - NNPB
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NNPB Material Property/Boundary
Condition Sensitivity
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Boundary Condition/Material Property Sensitivity

Analysis

Blank Temperature

Glass/Blank Heat Transfer

Radiation modeling

Plunger Temperature

Glass/Plunger Heat Transfer




Adaptive Mesh Effects
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Forming Modeling Sensitivity Studies — Time Step
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Still Missing

» Good data and physical model of glass/metal slip

 Studies on radiation model requirements:
— Effective conductivity vs. semi-transparent models
— Single or multi-banded



Initial Radiation Studies — DOM vs. Effective
Conductivity

 Using the diffusion
approximation resulted in an
error in the prediction of
reheat stretch time of 41

Temperature, K

percent compared to 13 1.3506+003
percent using the DOM 1.263¢+003
mOdel 1.175¢+003

« There was an increase in 1088003
heat transfer from the glass R 00
to the mold using the DOM parion Longth e, Time

model.

n Approximation
iscrete Ordinates Model

« Differences in final container
thickness were not large if
reheat/stretch times adjusted
to account for decreased
heat transfer in K4

Length, m

* Inclusion of the radiative
properties using the
DOM/VOF approach is very
computationally expensive.



Status of Forming Modeling Outstanding Issues

1 Glass/metal heat transfer

5 Radiation modeling

6 Glass viscoelastic effects




So where

Bottle
Analyzed —
300 mL
Longneck

is this all going now...?

ra '
40 NNPB Forming Timings =& S | o5 Gob Temperature N [F=SE
Lag”

Currently Angles Mot Specified Mo Temperature Specified

Enter the Cavity Rate Angle of Gob Load Gob T © Baffle T ©

Erterthe Cavity Rate Angle of Gob Load

e = I g ot H0b toa Gob Temperature IBaﬁ'Ie Temperature ()

Flunger Up On |} Plunger Down On l - © T ©

IF‘Iunger Up On IF‘Iunger Down On |
| IBIank Temperature (C) IMoId Temperature (C)

Elanks Open On Meckrings Open On

|Blanks Open On |Neckrings Open On Flunger Temperature (C) Meckring Temperature (C)
| IF'Iunger Temperature {C) INec:k.ring Temperature {C)

Final Blow On Molds Open On .

IFinaI Blow On IMoIds Open On | Time Stepping (ms) [1-100] Max Mesh Size (mm) [0.2-5]
' |Time: Stepping {ms) [1-100] |z Mesh Size (mm) [0.2-5]

Plunger Stroke (mm) Final Blow Pressure (bar) |

IF‘Iunger Stroke {mm) IFinaI Blow Pressure {bar)

Gaob load should be between blank close and baffle down

— ’, p
# Contact Accuracy Selection | [E=E) 5 Glass Type Selection | B
Wy
Select the Contact Accuracy Select the Glass Type
 Low  Medium  High " Flint ©° Amber " Dark Green

I

" ——

—
atl Project Directory

=)

v

No Directory Specified

INNPE_Forrmng




Automated Parameter Changes
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Glass Volume and Standard Deviation of Side
Wall Thickness Distribution vs. Design Iteration
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Conclusions

» There are still no reliable physics based models for glass/mold heat transfer or
slip conditions that exist. All forumulations are semi-empirical at best.

» Forming models require intelligent input and evaluation. Too much process
variability exists for «canned» solutions.

* Forming models ultimately must be linked with mold and plunger cooling
models in order to complete forming process picture.

* Feeder and delivery equipment heat losses continue to be problemmatic in
developing accurate forming solutions.

« Even if forming models provide a «solution», it does not mean that they will
point to the correct direction in terms of mold cooling or parison design.

« However...we are getting closer.



