

Container forming modeling: Sensitivity to boundary conditions, material properties, and underlying physics modelling

Matthew Hyre, Ph.D. University of Northwestern, St. Paul

Bottle Making Process

Gob Forming Models

Working End/Forehearth

Gob Transfer to Blank Mold

Gob Creation at Feeder

Feeder

Container Forming Modeling

Gob Loading

Invert

Parison Pressing

Reheat/Stretch

Inverted Reheat

Final Blow

Goals of Container Forming Modeling Effort

- Inverse parison design
- Improved blank mold design and cooling strategies
- Investigation of problem areas during forming process:
 - Large variation in container thickness
 - Non-uniform temperature distribution
 - Poor parison design
- Determine regions of high stress intensity
- Evaluate sources of high stress intensities and develop strategies to eliminate regions of potential check formation

Press & Blow Forming Process

Mold/Plunger Side Heat Transfer

Typical Container Forming Model

Container Forming Model – Beer

Typical Bottles Previously Simulated

Typical Wall Thickness Distribution Predictions

Why Doesn't it Always Work...?

Outstanding Forming Modeling Issues

- Fundamental understanding of glass/mold heat transfer and the effects of mold lubricants
- Accurate material properties
- Numerical limits (mesh size/time step)
- Fluid dynamic ("slip") condition at the glass mold interface
- Radiation modeling during forming
- Viscoelastic stress development and defect formation

Heat Transfer Boundary Conditions

Most studies assume a combination of the following:

- Perfect contact between mold and glass
- Heat transfer coefficient between glass and mold is constant
- Heat transfer coefficient usually based on overall heat balance rather than local conditions

Glass to Blank Mold Heat Flux Expressions

Glass/Mold Heat Transfer: Heat Flux Correlations

Heat Transfer Measurements

Glass/mold contact conductance experimentally modeled and includes the effects of:

- Glass pressure
- Glass color
- Initial glass temperature
- Initial mold temperature
- Mold type
 - (cast iron vs. Al-Br)

Governing Equation for Data Reduction

Discrete Ordinates Model for

Radiation

Plunger/air

convective

effects

Initial Mold

Temperature Profile

4

5

6

Assumptions

- Radial conduction much greater than axial or circumferential conduction
- Radiation is a diffusive process and can be included in an effective conductivity
- Plunger side heat transfer does not affect mold side heat transfer

Measured Material Properties

Glass Viscosity

 Modified WLF equation including Simmon's correlation for shear thinning and generalized White-Metzner viscoelastic model

Specific Heat of Glass

 Correlated vs. composition and temperature from 1500 K down to 300 K

• Glass Thermal Conductivity (Radiative Conductivity)

 Surface fit for glass thickness and temperature for various types of glasses (flint, amber, dark green, etc.)

Glass Thermal Expansion

- Curve fit as a function of temperature

Glass Surface Tension

- Curve fit as a function of temperature

Glass Thickness Sensitivity to Parameter Input - NNPB

0.1

50

100

Height (mm)

150

200

Plunger Temp (d50deg) Plunger Temp (u50deg)

The material properties were changed by $\pm 20\%$, and the temperature parameters were changed by ±50 degrees to test glass thickness sensitivity.

Boundary Condition/Material Property Sensitivity Analysis

1	Glass Specific Heat
2	Gob Temperature
3	Blank Temperature
4	Glass/Blank Heat Transfer
5	Radiation modeling
6	Plunger Temperature
7	Glass/Plunger Heat Transfer

Forming Modeling Sensitivity Studies – Max Mesh Size

Forming Modeling Sensitivity Studies – Time Step

Still Missing

Good data and physical model of glass/metal slip

- Studies on radiation model requirements:
 - Effective conductivity vs. semi-transparent models
 - Single or multi-banded

Initial Radiation Studies – DOM vs. Effective Conductivity

- Using the diffusion approximation resulted in an error in the prediction of reheat stretch time of 41 percent compared to 13 percent using the DOM model.
- There was an increase in heat transfer from the glass to the mold using the DOM model.
- Differences in final container thickness were not large if reheat/stretch times adjusted to account for decreased heat transfer in k_{eff.}
- Inclusion of the radiative properties using the DOM/VOF approach is very computationally expensive.

Status of Forming Modeling Outstanding Issues

1	Glass/metal heat transfer
2	Glass Material Properties
3	Numerical Limits
4	Glass/metal slip condition
5	Radiation modeling
6	Glass viscoelastic effects

So where is this all going now...?

Automated Parameter Changes

Distance from Finish (m)

Glass Volume and Standard Deviation of Side Wall Thickness Distribution vs. Design Iteration

Iteration Number

Standard Deviation of Side Wall Thickness (mm^3)

Conclusions

- There are still no reliable physics based models for glass/mold heat transfer or slip conditions that exist. All forumulations are semi-empirical at best.
- Forming models require intelligent input and evaluation. Too much process variability exists for «canned» solutions.
- Forming models ultimately must be linked with mold and plunger cooling models in order to complete forming process picture.
- Feeder and delivery equipment heat losses continue to be problemmatic in developing accurate forming solutions.
- Even if forming models provide a «solution», it does not mean that they will point to the correct direction in terms of mold cooling or parison design.
- However...we are getting closer.